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A B S T R A C T   

Shared micro-mobility services are rapidly expanding yet little is known about travel behaviour. 
Understanding mode choice, in particular, is quintessential for incorporating micro-mobility into 
transport simulations in order to enable effective transport planning. We contribute by collecting 
a large dataset with matching GPS tracks, booking data and survey data for more than 500 
travellers, and by estimating a first choice model between eight transport modes, including shared 
e-scooters, shared e-bikes, personal e-scooters and personal e-bikes. We find that trip distance, 
precipitation and access distance are fundamental to micro-mobility mode choice. Substitution 
patterns reveal that personal e-scooters and e-bikes emit less CO2 than the transport modes they 
replace, while shared e-scooters and e-bikes emit more CO2 than the transport modes they 
replace. Our results enable researchers and planners to test the effectiveness of policy in
terventions through transport simulations. Service providers can use our findings on access dis
tances to optimize vehicle repositioning.   

1. Introduction 

The usage of shared micro-mobility services has greatly increased in recent years. This development is perhaps best documented in 
the USA, where 35 M rides were recorded in 2017, 84 M rides in 2018 and 136 M rides in 2019 (NACTO, 2020). Many shared micro- 
mobility companies have since expanded around the globe and now offer their services in North American, European, Asian and 
Australian metropolises. In addition to the investor-led diffusion of shared micro-mobility services, the COVID-19 pandemic has 
expedited the diffusion of personal micro-mobility as alternatives to other means of commute. 

Given their rapid diffusion, effective regulation and integrated transport planning of micro-mobility vehicles and services is 
pertinent. City administrations are further asking how micro-mobility can contribute to increasingly stringent CO2 reduction targets. 
Advances in these directions, however, are hindered by our limited understanding of travel behaviour. Most importantly, we do not yet 
comprehensively understand mode choice between shared micro-mobility services and more established modes (e.g., public transport, 
private cars). Closing this gap is paramount: mode choice is one of the four essential ‘ingredients’ to conventional transport planning. 
Furthermore, mode choice models reveal competition and substitution patterns1 that enable determination of the net environmental 
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1 We find the following definition of modal substitution by Wang et al. (2021: 4) useful: “Modal substitution means that a certain number of trips 

made by a new mode of travel displace trips that would have been made by an existing mode; users substitute the new mode for an existing one (e.g. 
e-scooter substitutes for walking).” 
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impact of shared micro-mobility services more precisely than survey-based methods. In the words of Ortúzar and Willumsen (2011: 
207), “the issue of mode choice is probably the single most important element in transport planning and policy making”. 

The scope of the existing empirical literature on shared micro-mobility services strongly varies by mode. While travel behaviour 
with shared bikes is relatively well understood (e.g., Fishman et al., 2013; Ricci, 2015; Fishman, 2016; Teixeira et al., 2021), the 
literature on shared e-bikes is more limited (e.g., Campbell et al., 2016; Guidon et al., 2019; He et al., 2019). Shared e-scooters are the 
latest addition to the micro-mobility mix and researchers have only recently begun to analyse them (e.g., Christoforou et al., 2021; 
McKenzie, 2019; Noland, 2021; Wang et al., 2021, Younes et al., 2020). Most studies analyse patterns in user characteristics or trip 
characteristics of a single mode, or compare data on different modes. While they provide valuable indications on factors influencing 
the choice of a single mode, they cannot explain their relative influence in choice situations between multiple competing modes. To the 
best of our knowledge, only one study has previously estimated a mode choice model between several shared micro-mobility services 
(Reck et al., 2021a). That study’s use for integrated transport planning is limited, however, as it includes neither public transport and 
private modes, nor user characteristics. 

We contribute by estimating the first mode choice model that includes shared micro-mobility services (e-scooters and e-bikes), 
public transport, private modes (bike, car, e-bike, e-scooter) and walking, as well as user characteristics. To do so, we conducted a 
large-scale empirical study with 540 participants in Zurich, Switzerland. For each participant, we collected three months of GPS traces 
through a smartphone app, booking data for rides conducted with shared micro-mobility services, and socio-demographic information 
through two surveys. Additionally, we collected GPS points of all available shared micro-mobility vehicles in Zurich at a five-minute 
interval for the same period through the providers’ APIs (48 M GPS points). We then matched all trips (65 K) with selected contextual 
information (e.g., weather, available vehicles in close vicinity), user characteristics and non-chosen alternatives, and estimated mode 
choice using a mixed logit model. Finally, we demonstrate the practical utility of the model by deriving precise, distance-based 
substitution rates for shared micro-mobility services and their privately-owned counterparts, and by calculating their net environ
mental impacts. 

This paper is structured as follows. In Section 2, we review the literature on shared micro-mobility mode choice and substitution 
patterns. In Section 3, we introduce our data and the empirical context of our study. We develop the methodology, estimate the choice 
model and present the results in Section 4. In Section 5, we use the estimated model to derive substitution rates and to calculate the net 
environmental impacts of shared and personal e-bikes and e-scooters. We conclude with a discussion of the results and their impli
cations for research, policy and practice in Section 6. 

2. Literature review 

This section introduces the key results of previous studies on shared micro-mobility services. The first subsection focuses on mode 
choice and the second subsection focusses on substitution patterns. 

2.1. Mode choice with shared micro-mobility services 

We focus on aspects that are hypothesized to influence mode choice with shared micro-mobility services, such as user and 
household characteristics as well as trip and context characteristics. We aim to synthesize general patterns that are found to hold across 
all shared micro-mobility services, as well as to highlight differences between individual services to inform subsequent model 
specification. 

Users of shared micro-mobility services are typically young, university-educated males often with full-time employment and few to 
no children and cars in their households (NACTO, 2020; Reck and Axhausen; 2021; Shaheen and Cohen, 2019; Wang et al., 2021). 
Users of shared e-bikes, in particular, also include a higher shares of middle age groups (He et al., 2019) while users of shared e- 
scooters appear to be particularly young (NACTO, 2020; Reck and Axhausen, 2021; Sanders et al., 2020; Wang et al., 2021). Income 
distributions, in particular for shared e-scooter users, vary by region, but generally correspond to the regional median income (NACTO, 
2020; Reck and Axhausen, 2021). Vehicle ownership appears to correlate with shared vehicle usage, i.e. those who own e-scooters/e- 
bikes are more likely to use shared e-scooters/e-bikes as well (Fishman et al., 2013; Reck and Axhausen, 2021; Shaheen et al., 2011). 

Trips with shared micro-mobility services are shorter than with other motorized modes of transport (e.g., private cars, public 
transport). Shared e-scooters, for example, are used for short distances and most frequently in central business districts or near uni
versities (Bai and Jiao, 2020; Caspi et al., 2020; Hawa et al., 2021; Reck et al., 2021b; Zuniga-Garcia and Machemehl, 2020). Shared e- 
bikes are used for longer distances than e-scooters or regular bikes, often uphill (Du et al., 2019; Guidon et al., 2019; Guidon et al., 
2020; He et al., 2019; Lazarus et al., 2020; MacArthur et al., 2014; Reck et al., 2021b; Shen et al., 2018; Younes et al., 2020). Pre
cipitation and low temperatures negatively influence the usage of all shared micro-mobility services (El-Assi et al., 2017; Gebhart and 
Noland, 2014; Noland, 2019; Noland, 2021; Zhu et al., 2020). The evidence on use by time of day for shared e-scooters is inconclusive: 
some studies find evidence of two commuting peaks (Caspi et al., 2020; McKenzie, 2019), others only find single afternoon usage peaks 
(Bai and Jiao, 2020; Mathew et al., 2019; Reck et al., 2021b; Younes et al., 2020). In comparison to shared docked bikes, commuting 
use of shared e-scooters seems to be less pronounced (McKenzie, 2019; Reck et al., 2021a; Younes et al., 2020). Finally, vehicle access 
distance appears to influence usage (Christoforou et al., 2021). 

The above studies provide valuable indications on factors influencing the choice of a single shared micro-mobility mode. However, 
they cannot explain the relative influence of factors in choice situations between multiple competing modes. To the best of our 
knowledge, only one study has previously estimated mode choice models between several shared micro-mobility services based on 
revealed preference data. Reck et al. (2021a) collected trip-level data of four different shared micro-mobility modes in Switzerland and 
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estimated a matching mode choice model. Findings include that shared micro-mobility mode choice is dominated by distance, 
elevation rise, and time of day. While docked (e-)bikes are preferred for longer distances and during commuting times, dockless e- 
scooters are preferred for shorter distances and during the night. The density of available vehicles at the point of departure further 
influences mode choice (this effect is strongest for dockless fleets). Two useful extensions to this previous paper would be to include 
other transport modes (e.g., public transport, private cars) and user characteristics so that the results can be used to incorporate shared 
micro-mobility services into transport simulations, which is key to effective integrated transport planning. 

2.2. Substitution patterns for shared micro-mobility services 

The vast majority of previous empirical studies elicit substitution patterns with disaggregate methods such as surveys asking 
retrospective counterfactual questions (e.g., “If an e-scooter had not been available for your last trip, how would you have made that 
trip?”) (Wang et al., 2021). Response categories usually include a range of alternative transport modes and an option to indicate that 
the trip would not have been conducted if the original transport mode had not been available. 

Four successive reviews have compiled the evidence on substitution effects of bikesharing (Fishman et al., 2013, Ricci, 2015; 
Fishman, 2016; Teixeira et al., 2021). Most recently, Teixeira et al. (2021: 9) conclude: “most substituted trips by BSS2 derive from 
sustainable modes of transport, with only a small part shifting from car.” Taking the median of all 19 reviewed studies, bikesharing is 
found to replace public transport most (41%) followed by walking (29%) and private cars/motorcycles (10%). Several authors have 
suggested that substitution rates depend on local modal shares (Fishman et al., 2014; Teixeira et al., 2021). In other words, the car 
substitution rate hypothesized to be higher in places with higher car modal shares. Indeed, this hypothesis is supported by the review 
data, i.e. the car substitution rates for bikesharing in the USA (Minnesota) and Australia (Brisbane and Melbourne) are substantially 
higher (19%) than in Europe (9%). 

Despite their novelty, several studies already investigated the substitution effects of shared e-scooters. Wang et al. (2021) recently 
reviewed the emerging evidence and conclude: “shared e-scooter users report walking as the most common transport mode substituted, 
ranging between 30 and 60% of trips” (Wang et al., 2021: 6). Taking the median of all 19 reviewed studies, shared e-scooters are found 
to replace walking most (43%), followed by taxis/TNCs (22%) and private cars (13%). A direct comparison between these numbers and 
the previously reported numbers for bikesharing would be misleading, though. First, 17 out of 19 studies in the Wang review were 
conducted in the USA (vs. 5 out of 19 in the Teixeira review) thus the share of replaced public transport trips is naturally expected to be 
lower. Second, the Teixeira review includes mostly peer-reviewed academic studies (11 out of 19), while only 2 out of 19 sources cited 
in the Wang review were peer-reviewed (most studies were contracted by cities). Three peer-reviewed academic studies published 
since then suggest that shared e-scooters in Europe mostly replace walking and public transport. Christoforou et al. (2021) conducted a 
study in Paris finding that shared e-scooters mainly replaced public transport (37%), walking (35%) and only rarely motorized modes 
(private cars, taxi, motorcycle) (16%). Fearnley et al. (2020) conducted a study in Oslo finding that shared e-scooters mainly replaced 
walking (60%), public transport (23%) and motorized modes (taxi, private car) (8%). Finally, Laa and Leth (2020) conducted a study in 
Vienna finding that shared e-scooters mostly replaced walking trips followed by public transport (bus, tram). Interestingly, the latter 
study found that e-scooter owners tend to substitute private car trips to a much higher degree than shared e-scooter users. 

Peer-reviewed empirical evidence on substitution effects of shared dockless e-bikes as previously presented for other shared micro- 
mobility modes is scarce. Accordingly, the most recent review on the impact of bikesharing on travel behaviour concludes: “new 
innovations such as dockless systems and e-bikes could induce different modal shifts but have not been properly investigated.” 
(Teixeira et al., 2021: 17) Bourne et al. (2020: 1) further note: “The volume of research has increased since 2017 and primarily ex
amines personal e-bike use, as opposed to e-bike share/rental schemes or organizational e-bike initiatives.” The three studies the 
authors are aware of were conducted by Bieljnski et al. (2021), Fukushige et al. (2021) and by Campbell et al. (2016). Bieliński et al. 
(2021) examined an electric bike-sharing system in Tricity, Poland, using two matched surveys. They found that shared e-bikes were 
predominantly used as substitutes for public transport or for walking. Fukushige et al. (2021) investigated modal substitution with 
shared dockless e-bikes (Jump) in Sacramento, California. They found that shared e-bikes replaced walking (33%) followed by driving 
(drive alone and carpool, 20%), ride-hailing (16%) and cycling (14%). In this study, public transport was only rarely substituted (5%). 
Finally, Campbell et al. (2016) conducted an SP experiment in Beijing, China, to estimate the likelihood of cyclists switching to 
conventional shared bikes or to shared e-bikes and found that the impact of both modes on car replacement was low, yet higher for 
shared e-bike users (6% vs 3%). Several papers since investigated substitution effects of privately owned e-bikes which might serve as 
indications though differences in usage between privately owned and shared devices can be expected and have been observed for other 
modes such as shared e-scooters (Laa and Leth, 2020; Teixeira et al., 2021). Bigazzi and Wong (2020: 1) recently reviewed the evidence 
of privately owned e-bikes and conclude that “median mode substitution reported in the literature is highest for public transit (33%), 
followed by conventional bicycle (27%), automobile (24%), and walking (10%)”. Several recent papers confirm previous hypotheses 
that modal shifts largely depend on regional mode splits and available alternatives (Bourne et al., 2020; Kroesen, 2017; Söderberg 
et al., 2021; Sun et al., 2020). Finally, Söderberg et al. (2021) conducted a noteworthy randomized controlled trial with e-bikes in 
Sweden. They distributed e-bikes to a treatment group and observed travel behaviour in comparison to a control group leveraging 
smartphone-based GPS tracks. Their analyses demonstrate that the treatment group increased their cycling activity by 25% at the 
expense of car use. 

2 Bike Sharing Scheme. 
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Methodologically, only few studies depart from the survey approach to elicit substitution patterns empirically. The most relevant 
one to this article was conducted by Li et al. (2021). They employed a mixed logit model to derive substitution patterns for dockless 
bike-sharing in Shanghai, China. While the approach was new, a key limitation to the implementation was that only separate (i.e., not 
matched) booking and survey data was available, and that booking data was restricted to dockless bike-sharing (i.e., no other transport 
modes). The authors hence estimated their mode choice model on one dataset (survey data) and applied it on the other (booking data) 
to estimate trip-based substitution patterns, which inevitably leads to biased results as populations in both studies differ. 

2.3. Contributions of this study 

This study contributes by collecting a first comprehensive dataset that includes revealed preference data on trips conducted with 
different shared micro-mobility services (e-scooters, e-bikes), public transport, private modes (bike, car, e-bike, e-scooter) and 
walking, and by estimating a mode choice model between all eight transport modes. We further contribute by deriving distance-based 
substitution patterns for shared and personal e-bikes and e-scooters from the mode choice model, and by calculating their resulting net 
environmental CO2 emissions. 

3. Data 

3.1. Location and recruitment 

Our study is conducted in Zurich, which is Switzerland’s largest city with 403 K inhabitants in the city and 1.5 M inhabitants in the 
metropolitan area. Zurich has a high trip-level public transport mode share of 41% according to the latest Swiss mobility census 
(MZMV, 2015). The share of trips conducted with private cars has been declining steadily over the past years from 40% in 2000 to 25% 
in 2015. The remaining trips are conducted with active modes (walking: 26%, (e-) bikes: 8%). Several micro-mobility companies 
operate in Zurich making it a suitable place to study their usage. They include docked (e-)bikes (Publibike), dockless e-bikes (Bond) 
and dockless e-scooters (e.g., Lime, Bird, Tier, Voi). Fig. 1 shows the spatial coverage of shared micro-mobility services and public 
transport in Zurich. Shared micro-mobility services tend to be more available in the city-centre while public transport stations are more 
evenly distributed across the city boundary. A buffer analysis (Table 1) around the locations of shared micro-mobility vehicles and 
public transport stops shows that for short distances (i.e., 100 m), a higher amount of the city’s total area (87.88 km2) can be accessed 
with shared micro-mobility services (23.2%) than with public transport (14.7%). This ratio reverses for longer distances (i.e., 200 m −
400 m), where more area can be accessed with public transport (45.9% − 76.9%) than with shared micro-mobility services (45.7% −
66.0%). This analysis reflects the spatial distribution of the services (Fig. 1). 

Fig. 1. Spatial coverage of shared micro-mobility services (left) and public transport stations (right) in Zurich on 1 July 2020 (3 pm - 4 pm). Kernel 
densities with a radius of 150 m (492ft). 

Table 1 
Zurich city area accessible within 100 m − 400 m from public transport stops/shared micro-mobility vehicle locations.  

Mode 100 m 200 m 300 m 400 m 

Public transport  14.7%  45.9%  66.1%  76.9% 
Shared micro-mobility  23.2%  45.7%  57.8%  66.0%  
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Data collection began in June 2020. The cantonal statistical office sent invitations to participate in our mobility study to 10 000 
randomly selected inhabits of Zurich municipality of age 18 to 65. The study included two surveys and three months of GPS smart
phone tracking. Respondents were offered an incentive of 90 CHF3 for their participation. All invitation letters included detailed 
information on the purpose of the study and the methods to collect and process the data in compliance with the EU General Data 
Protection Regulation. The study design was reviewed and approved by the university’s Ethics Committee without reservations. 

A total of 1 277 people returned the first survey between June and July 2020. The resulting response rate of 12.7% is well in the 
expected range for a survey with a considerable response burden of 643 points (Schmid and Axhausen, 2019). Only respondents who 
completed the first questionnaire were invited to participate in the subsequent GPS tracking and the final survey. A total of 540 (6%) 
respondents completed the entire study and their data is used for the analyses in this paper. The subsequent subsections introduce the 
data sources and the data integration flow, and discuss the representativeness of our sample. 

3.2. Data sources and data integration flow 

This subsection gives an overview of each individual data source (survey, GPS tracks, booking records, contextual data) and how 
they are combined (data integration flow) to conduct the analyses in this paper. 

3.2.1. Survey 
We designed two online surveys that include a total of 171 questions to elicit socio-demographic and mobility-related information. 

All questions and answer categories were formulated to be equal to the latest available Swiss mobility census to enable direct com
parison. Documentation in English4 and questionnaires in German5 and French6 are available online. The surveys were structured into 
the following three blocks:  

• person-specific socio-demographic questions (e.g., year of birth, gender, educational attainment, current occupation),  
• household-specific socio-demographic questions (e.g., number of adults and children, monthly income, mobility tool ownership), 

and  
• person-specific mobility questions (e.g., public season ticket ownership, travel priorities, knowledge of and membership in shared 

(micro-) mobility schemes, frequency of use, access to shared micro-mobility services at home and work). 

Fig. 2. GPS tracking app on iPhone SE (left: calendar view, middle: map view, right: edit mode view).  

3 1 CHF = 1.08 USD at the time of writing (29 June 2021).  
4 https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html  
5 https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.assetdetail.5606052.html  
6 https://www.bfs.admin.ch/bfs/fr/home/statistiques/mobilite-transports/enquetes/mzmv.assetdetail.5606053.html 

D.J. Reck et al.                                                                                                                                                                                                         

https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.assetdetail.5606052.html
https://www.bfs.admin.ch/bfs/fr/home/statistiques/mobilite-transports/enquetes/mzmv.assetdetail.5606053.html


Transportation Research Part D 102 (2022) 103134

6

3.2.2. GPS tracks 
The smartphone app ‘MyWay’ (available in app stores) was used for GPS tracking. The app passively collects raw smartphone data 

(GPS traces, sensor data), identifies trips and infers the transport mode used based on a comparison with public transport timetables, 
acceleration and travel speed, and past user mode choice. Each day, the app presents users with a summary of their realized trip legs 
and allows retrospective editing of transport modes. Fig. 2 gives a visual impression of the user interface. Overall, we collected 65 716 
trips for 540 respondents with this method, which further divide into 17 004 public transport trips, 16 211 car trips, 15 393 walking 
trips, 14 246 bike trips, 2 537 e-bike trips, and 345 e-scooter trips. 

3.2.3. Booking records 
We further received booking records for all shared micro-mobility trips booked by our participants during the study duration 

through a new intermodal journey planning app ‘yumuv’ (available in app stores), which was launched by Swiss Federal Railways in 
June 2020. Matching these booking records with the GPS tracks allowed us to differentiate private from shared micro-mobility trips. 
Out of the total of 2 537 e-bike trips, 287 had matching booking records and were hence labelled as shared e-bike trips. Out of the total 
of 345 e-scooter trips, 121 had matching booking records. 

3.2.4. Contextual data 
Finally, we added contextual data to each trip. This includes weather data (openly available in ten-minute intervals for Zurich), as 

well as the distance to the next available shared micro-mobility vehicle at the beginning of each trip. In order to compute the latter, 
Swiss Federal Railways records the locations of all shared micro-mobility vehicles in Zurich in five-minute intervals through the 
providers’ APIs. 

3.2.5. Data integration flow 
Fig. 3 shows the overall data integration flow. From left to right and from top to bottom, we start with the passively collected raw 

smartphone data (GPS tracks, sensor data), which the smartphone app ‘MyWay’ automatically pre-processes towards an ‘unvalidated 
travel diary’ using information on past user mode choice, acceleration and travel speeds, as well as public transport timetables. The 
performance of the app’s backend to infer transport modes is exceptionally high (correct inferred mode in 92% of all cases) as results 
and comparisons from previous papers using the same tracking app in Zurich show (Molloy et al., 2020). The unvalidated travel diary 
contains trip legs (GPS O/D, timestamp, inferred transport mode) and activities. Each day, the app presents users with a summary of 
their realized trips and allows retrospective editing of transport modes (‘user validation’), which results in the ‘validated travel diary’. 
In a third step, the validated travel diaries are matched with the booking data (via user IDs, GPS O/D and timestamps) to separate 
shared from private micro-mobility trips (‘matching’). Note that we also aggregate trip legs to trips in this step to be able to estimate 
the mode choice model subsequently. The metric used to identify the main transport mode per trip is distance, i.e. the mode that covers 
the largest share of the total distance is identified as the main transport mode for the trip. Finally, we integrate the ‘matched travel 

Fig. 3. Data integration flow chart.  
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diary’ with the ‘survey data’ and the ‘context data’ via user IDs, GPS O/D and timestamps to obtain the final, integrated dataset. 

3.3. Representativeness 

We compare the characteristics of our sample to the latest censuses to investigate its representativeness. The latest available 
censuses are the 2018 “Strukturdatenerhebung” (SE) and the 2015 mobility census “Mikrozensus Mobilität und Verkehr” (MZMV). 
While the former is more current, the latter includes substantially more information on mobility-related topics. 

Table 2 shows the resulting comparison. Our sample is slightly younger (mean: 38 years) than the respondents of both previous 
censuses (2015: 42 years, 2018: 41 years)7. It further includes slightly fewer females (46%) than previous censuses (2015: 50%, 2018: 
51%). The share of respondents holding a tertiary degree (2015: 49%, 2018: 58%, 2020: 76%) and the share of respondents in full-time 
employment (2015: 63%, 2018: 68%, 2020: 81%) are higher in our sample than in both previous surveys. In line, the mean monthly 
household income is also higher in our sample than in the previous survey (2015: ~9,000 CHF, 2020: ~10,000 CHF). The household 

Table 2 
Comparison of survey respondents and recent censuses. All values in %.   

This survey Census (SE) Census (MZMV) 

Year 2020 2018 2015 
N (Zurich municipality only) 540 7808 809 
Filtered for age groups 18–65 18–65 18–65 
Person-specific attributes    
Age    

18–20 0 3 2 
21–30 26 20 16 
31–40 38 31 28 
41–50 23 22 25 
51–60 8 18 21 
61–65 5 7 8 

Female 46 50 51 
Education (tertiary degree) 76 58 49 
Full-time employed 81 68 63 
PT season ticket ownership    

Nation-wide 19 n/a 16 
Local (Zurich) 38 n/a 43 

Household-specific attributes    
Monthly income    

4,000 CHF and below 17 n/a 11 
4,001 CHF – 8,000 CHF 21 n/a 35 
8,001 CHF – 12,000 CHF 23 n/a 26 
12,001 CHF – 16,000 CHF 25 n/a 14 
16,000 CHF and above 13 n/a 14 

Children    
0 73 70 62 
1 12 14 17 
2 and above 15 15 20 

Adults    
1 26 28 15 
2 62 56 56 
3 and above 12 15 29 

Cars    
0 46 n/a 45 
1 45 n/a 43 
2 and above 9 n/a 11 

Bikes    
0 16 n/a 19 
1 20 n/a 25 
2 and above 63 n/a 56 

E-bikes    
0 86 n/a 95 
1 10 n/a 4 
2 and above 4 n/a 1 

E-Scooters    
0 97 n/a n/a 
1 3 n/a n/a 
2 and above 0 n/a n/a  

7 Note that all surveys are filtered for respondents of age 18+ as this is the required legal minimum age to use shared micro-mobility services in 
Zurich at the time of writing. 
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structure exhibits slight differences in the share of single/dual adult households (2015: 71%, 2018: 84%, 2020: 85%) as well as in the 
share of households without children (2015: 62%, 2018: 70%, 2020: 73%). Households in our sample further owned slightly fewer 
cars, and slightly more bikes, e-bikes and nation-wide public transport season tickets compared to the 2015 census. 

4. Mode choice 

In this section, we estimate the mode choice model and present the results. 

4.1. Method 

We first generate the choice sets by complementing each of the 65 716 observed trips in our GPS tracking data with the data for the 
non-chosen alternatives. For each observed trip, we calculate the non-chosen alternatives with the agent-based transport simulation 
software MATSim (Horni et al., 2016). The MATSim Zurich scenario has been used extensively in transport planning research (e.g., 
Balac et al., 2019; Becker et al., 2020; Hörl et al., 2021; Manser et al., 2020) and provides reliable attribute values for the non-chosen 
alternatives. Due to reasons described earlier, MATSim is limited to public transport, private cars, private bikes and walking. While we 
can safely assume that e-bikes and e-scooters are used on the same routes as private bikes (thus, distances of these alternatives are 
equal), travel times are likely to differ. Thus, we constrain our models to use distance parameters only and exclude travel time 
parameters. 

In addition to trip-specific attributes (distance, access distance, transfers, elevation, time of day), we include weather (precipita
tion, wind) and a number of binary person-specific attributes that have previously been hypothesized to influence micro-mobility 
mode choice. These include public transport season ticket ownership (local, nation, bundle8), the number of vehicles in the house
hold (cars, bikes, e-bikes, e-scooters), age, gender, university education and employment status. Prices were not included in this choice 
model as they are heavily correlated with distances for many transport modes such as private cars, shared e-scooters and shared e- 
bikes, and their inclusion would thus lead to multicollinearity issues. For example, the shared e-bike operator in Zurich charges an 
unlocking fee of 1 CHF and an additional per-kilometre fee of 1 CHF. Table 3 summarizes all attributes used for subsequent model 
estimation. 

We build on discrete choice theory to develop our mode choice model. In particular, we select a mixed logit model to account for 
the panel structure of our data as well as for taste heterogeneity in mode choice between individuals (Hensher and Greene, 2003; 
McFadden and Train, 2000; Train, 2009). 

Table 3 
Attributes used for model estimation (trip-level statistics).  

Attribute Unit Min. 1st Qu. Med. Mean 3rd Qu. Max. 

Trip-specific attributes       
Distance km  0.01  1.35  3.01  4.15  5.60  80.28 
Access distance1        

PT km  0.01  0.29  0.42  0.45  0.56  4.30 
Shared e-bike2 km  0.00  0.13  0.22  0.23  0.33  0.50 
Shared e-scooter2 km  0.00  0.04  0.07  0.09  0.12  0.50 

Transfers count  0.00  0.00  1.00  0.63  1.00  4.00 
Elevation km  − 0.47  − 0.02  0.00  0.00  0.02  0.47 
Morning (6am – 9am) binary  0.00  0.00  0.00  0.19  0.00  1.00 
Night (9 pm – 5am) binary  0.00  0.00  0.00  0.09  0.00  1.00 
Weather        
Precipitation mm/h  0.00  0.00  0.00  0.16  0.05  6.14 
Wind speed m/s  1.22  3.56  4.73  5.26  6.19  18.68 
Person-specific attributes      
PT season ticket (local) binary  0.00  0.00  0.00  0.40  1.00  1.00 
PT season ticket (nation) binary  0.00  0.00  0.00  0.18  0.00  1.00 
PT season ticket (bundle) binary  0.00  0.00  0.00  0.04  0.00  1.00 
Cars in household count  0.00  0.00  1.00  0.64  1.00  5.00 
Bikes in household count  0.00  1.00  2.00  2.25  3.00  6.00 
E-bikes in household count  0.00  0.00  0.00  0.18  0.00  3.00 
E-scooters in household count  0.00  0.00  0.00  0.03  0.00  2.00 
Age years  19.00  30.00  36.00  37.92  45.00  65.00 
Female binary  0.00  0.00  0.00  0.46  1.00  1.00 
University education binary  0.00  0.00  1.00  0.74  1.00  1.00 
Full-time employment binary  0.00  0.00  1.00  0.69  1.00  1.00 

1 access distance is only defined for public transport and shared micro-mobility services. 
2 when available. 

8 Transport bundles sold in Zurich during the time of study included a local public transport season ticket and a 60-minute monthly allowance for 
shared micro-mobility services. 

D.J. Reck et al.                                                                                                                                                                                                         



Transportation Research Part D 102 (2022) 103134

9

In the context of random utility models, choices of individuals can be explained by comparing the relative utility of each alternative 
and choosing the alternative with the highest utility 

Pnit = Pr
(
Unit ≥ Unjt, ∀j ∕= i

)
(1) 

where Pnit is the probability of individual n choosing alternative i over alternatives j in choice situation t, Unit is the utility of 
alternative i for individual n in choice situation t, and Unjt is the utility of alternative j for individual n in choice situation t. The utility of 
alternatives is separated into two parts: a deterministic part, V, and a random part, , such that 

Unit = Vnit + εnit (2) 

The deterministic part V can further be expressed as 

Vnit = βni0 +
∑K

k=1
βikxnitk (3) 

where βni0 is a random alternative-specific constant to capture heterogeneity in mode choice over individuals, βik is a vector of 
parameters for K attributes to be estimated, and xnitk is a vector of (observed) explanatory variables. In our case, the explanatory 
variables include person-specific information (e.g., socio-demographics such as age and gender) as well as trip-specific information (e. 
g., distance, precipitation). For an overview of all explanatory variables, we refer to Table 3. The final formulation of all utility 
functions for our models can be found in Appendix 1. 

The choice probability for mixed logit models can be expressed as 

Pnit =

∫

Lnit(β)f (β)dβ (4) 

where Lnit(β) is the logit probability at parameters β , defined as 

Lnit(β) =
eVnit(β)

∑J
j=1eVnit(β)

(5) 

and f(β) is a density function. For further detail on the mathematical formulation of mixed logit models, we refer to Hensher and 
Greene (2003), McFadden and Train (2000) as well as Train (2009). 

We built and estimated our specific model iteratively (i.e., dropping insignificant and insubstantial variables) to obtain the most 
parsimonious model possible that simultaneously allows for cross-modal comparisons. For model estimation, we used maximum 
likelihood with 500 MLHS9 draws in the R package Apollo (Hess and Palma, 2019). Apollo recognizes the repeated choice nature of 
panel data and multiplies probabilities across individual choice observations for each individual (Hess and Palma, 2019). 

Finally, we set the availabilities. For each person, we verify if each transport mode was used at least once during the three months. If 
not, we set the availability of the respective transport mode to zero for all trips of that person, i.e. remove it from the choice set for this 
person. Further, we set the availability of shared e-scooters, shared e-bikes and public transport to zero for each trip where no vehicle 
was detected within a 500 m radius or no public transport connection was found. 

4.2. Results 

Table 4 displays the estimation results. The mixed logit model has an excellent fit with an adjusted rho-square value of 0.45. In 
comparison to the reference mode (walking), trip distance substantially and significantly influences mode choice for all other modes. 
Precipitation positively influences mode choice for public transport and cars, and negatively for all micro-mobility modes, most so for 
shared e-bikes and e-scooters. Elevation and wind speed further negatively influence mode choice for non-electric bikes. 

One perhaps surprising result concerns the penalty of the access distance for public transport and shared e-bikes and e-scooters. 
Access distance for shared e-scooters is penalized substantially more (-5.89) than access distance for public transport and shared e- 
bikes (-2.29 and − 2.43, respectively)10. Users of shared e-scooters are willing to walk an average of 60 m and a maximum of 210 m to 
access a vehicle, while users of shared e-bikes are willing to walk an average of 200 m and up to 490 m to access a vehicle. Public 
transport users are willing to walk even longer (average: 400 m) to reach their preferred stop. We offer three explanations for this 
behaviour. First, it can be related to the spatial availability of the different services (cf. Fig. 1 and Table 1). The availability and density 
of shared micro-mobility services is particularly high in the city centre, where most trips are also conducted and where access distances 
are relatively short. The outer city areas can only be reached with public transport as micro-mobility services are largely absent, hence 
longer access distances have to be accounted for. Second, shared e-scooters are used for substantially shorter distances than both other 
modes. Hence, a 200 m access distance relative to the overall trip distance is substantially more for shared e-scooters and thus presents 
a greater relative burden. Third, shared e-scooters cannot be pre-reserved in Zurich. The longer the access distance, the more un
certainty in availability users face. For public transport real-time information about vehicle locations is available through major trip 
planning apps (e.g., Google Maps or the city’s public transport app) and Zurich’s shared e-bikes can be pre-reserved for up to ten 
minutes. 

9 MLHS draws avoid undesirable correlation patterns that arise when standard Halton sequences are used for several variables (Hess et al., 2006).  
10 Additional saturation effects of the density of shared micro-mobility fleets were not found. 
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Table 4 
Estimation results (mixed logit model).   

PT Car Bike E-Bike (personal) E-Bike (shared) E-Scooter (personal) E-Scooter (shared)  
Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. Coef. t.rat. 

ASC (μ) − 4.01  − 9.04  − 6.13  − 10.38  − 3.80  − 9.08  − 5.86  − 13.77  − 6.48  − 9.88  − 6.49  − 8.44  − 4.67  − 7.90 
ASC (σ) − 1.22  − 44.62  − 1.71  –33.68  − 1.79  − 42.81  − 1.30  − 25.54  − 1.76  − 12.84  0.77  5.70  0.40  3.32 
Distance 2.10  23.00  1.95  24.55  1.61  22.08  1.78  22.44  2.25  14.77  1.57  9.02  1.34  9.77 
Distance * Distance − 0.04  –23.78  − 0.03  − 27.90  − 0.03  –23.74  − 0.03  − 15.81  − 0.08  − 5.29  − 0.06  − 2.82  − 0.02  − 1.67 
Distance * Precipitation 0.78  3.34  0.74  3.16  − 0.77  − 3.29  − 0.76  − 2.41  − 4.34  − 3.16  − 0.63  − 0.88  − 4.29  − 1.64 
Distance * Elevation      − 0.14  − 3.39         
Distance * Wind speed      − 0.33  − 2.40         
Access distance − 2.29  − 29.89        − 2.43  − 2.02    − 5.89  − 2.77 
PT transfer − 0.64  –23.05             
Morning (6am – 9am) 0.27  5.01  − 0.13  − 2.28  0.34  6.64  0.44  5.16  − 0.04  − 0.17  0.71  2.65  0.34  1.19 
Night (9pm – 5am) − 0.12  − 1.64  − 0.04  − 0.53  − 0.04  − 0.54  − 0.23  − 1.80  − 0.20  − 0.71  0.86  3.31  0.31  1.05 
Vehicles in household    1.25  29.19  0.15  8.47  1.34  19.32    2.36  4.68   
PT season ticket (local) 0.32  4.64             
PT season ticket (nation) 0.99  11.86             
PT season ticket (bundle) 0.87  6.21        − 0.11  − 0.49    1.84  8.09 
Age 0.00  − 0.03  0.02  1.83  0.01  1.38  0.01  0.93  0.04  3.00  0.02  1.16  0.00  − 0.27 
Female 0.15  2.31  − 0.39  − 5.08  − 0.38  − 5.51  0.13  1.21  0.78  2.59  0.23  0.68  − 0.83  − 2.16 
University education − 0.03  − 0.30  0.28  1.88  0.06  0.58  0.78  5.31  0.08  0.28  − 1.78  − 6.33  − 0.10  − 0.28 
Full-time employment − 0.24  − 2.46  − 0.36  − 3.51  − 0.13  − 1.52  0.66  5.31  1.98  8.22  2.48  4.77  0.49  1.45 

Number of individuals 540              

Number of observations 65 716              
Adj. Rho-square 0.45               
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Several further parameter estimates show the expected results and are thus only briefly mentioned here. For public transport, 
season tickets positively influence mode choice while transfers negatively influence mode choice. The transport bundle further 
positively influences mode choice for shared e-scooters. Vehicle ownership positively influences mode choice for each respective 
mode. Of the socio-demographic parameter estimates, gender and full-time employment are most significant at the 95% confidence 
level. Identifying as female positively influences mode choice for public transport and negatively for cars, bikes and shared e-scooters. 
Full-time employment, in turn, positively influences mode choice for shared and personal e-bikes as well as personal e-scooters, while 
it negatively influences mode choice for the more established transport modes such as public transport, private cars and bikes. 

5. Substitution patterns and environmental implications 

In this section, we first utilize the estimated choice model to derive substitution patterns11 for each micro-mobility mode. Using 
these substitution patterns, we then calculate net CO2 emissions. 

5.1. Substitution patterns 

Methodologically, only a slight adaption to the above choice model is necessary to derive substitution patterns. We take the subsets 
of trips conducted with e-scooters and e-bikes and set the availability for each mode, when chosen, from one to zero. We then apply our 
model to the subset of trips with adjusted availabilities to predict the alternative mode choice. Conceptually, this predicted alternative 
mode is equal to what is commonly described as a substituted mode, i.e. the mode that would have been chosen if the chosen mode had 
not been available. Using the new predictions, we can calculate average substitution rates for e-scooters and e-bikes on a trip-level and 
on a km-level. For the trip-level, we divide the number of trips with a particular substituted mode (e.g., public transport) by the total 
number of trips conducted with the micro-mobility mode (e.g., shared e-scooters): 

subratetriplevel(modechosen,modesubstituted) =

∑
trips(modesubstituted)

∑
trips(modechosen)

(6) 

where 
∑

trips(mode) denotes the number of trips conducted with a particular mode. 
For the km-level, we divide the total distance covered with a particular substituted mode by the total distance covered with the 

micro-mobility mode: 

subratekmlevel(modechosen,modesubstituted) =

∑
distance(modesubstituted)

∑
distance(modechosen)

(7) 

where 
∑

distance(mode) denotes the total distance covered with a particular mode. 
The resulting substitution patterns are shown in Table 5. We observe that personal e-bikes replace trips conducted with all four 

main modes (walk, PT, car, bike), while shared e-bikes replace substantially fewer car trips and more PT and bike trips. E-scooters in 
general replace substantially more walk trips than e-bikes. In general, the trip-level substitution rates exhibit a higher share of walking 
trips than the km-level substitution rates. The reason is that walking trips are comparatively short, thus have less impact in distance- 
based measures. 

One of the many advantages of this choice model-based approach to deriving substitution patterns is that precise distance measures 

Table 5 
Micro-mobility substitution rates (trip-level and km-level) derived from the mode choice model.   

E-Bike (personal) E-Bike (shared) E-Scooter (personal) E-Scooter (shared) 

Mode trip km trip km trip km trip km 

Walk 26% 9% 24% 9% 35% 19% 51% 25% 
PT 20% 29% 27% 43% 23% 27% 19% 38% 
Car 37% 48% 11% 15% 17% 25% 12% 15% 
Bike 17% 14% 33% 29% 24% 27% 13% 13% 
E-Bike (personal)   3% 5% 2% 1% 1% 2% 
E-Bike (shared) 0% 0%   0% 0% 4% 5% 
E-Scooter (personal) 0% 0% 0% 0%   0% 0% 
E-Scooter (shared) 0% 0% 0% 0% 0% 0%    

11 Substitution patterns (or ‘substitution rates’) can also be elicited with surveys, i.e. by asking participants about their last trip and their alter
native mode choice. Indeed, this approach is much more common than the choice model approach developed here. The latter, however, has one key 
advantage over the former: it allows to calculate precise, distance-based substitution patterns. These are more adequate for estimating environ
mental implications than trip-based substitution patterns stemming from surveys for three reasons. First, it is substituted distance and not 
substituted trips that matters when calculating environmental implications. Second, substitution patterns derived from choice models are valid for 
all trips, not just the ones explicitly asked for, as they build on user preferences. Third, substitution patterns derived from choice models are more 
reliable than those derived from stated preference surveys, which are prone to biases such as the recall bias or the social desirability bias. Hence, we 
chose to proceed with the choice model approach instead of detailing the results from survey data, which we also elicited. 
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for each trip are observed. For surveys, these are usually imprecise or simply not available as they are based on participants’ memories 
of recent trips. Fig. 4 displays substitution rates by distance brackets. Two general patterns emerge. For short trips, all micro-mobility 
modes mostly replace walking. As the distance grows, the shares of replaced public transport, bike and car trips increase. Personal e- 
bikes, however, replace personal cars substantially more often for longer distances than all other modes. 

Fig. 4. Substitution rates for micro-mobility modes by distance.  

Fig. 5. Life cycle CO2 emissions per passenger kilometre of selected transport modes 
(adapted from ITF, 2020). 
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5.2. Environmental implications 

The impact of a new transport mode on the sustainability of the surrounding transport system depends not only on the replaced 
modes, but also on their respective emissions. In this subsection, we integrate our findings on substitution patterns with previous 
findings on gross CO2 emissions to calculate the net CO2 emissions of the different micro-mobility modes. 

Building on previous work from de Bortoli and Christoforou (2020) and Hollingsworth et al. (2019), the International Transport 
Forum (ITF, 2020) recently conducted a comprehensive analysis of the life cycle emissions of emerging and more established transport 
modes. It took into account not only established components of such analyses (e.g., infrastructure wear, vehicle manufacturing, and 
fuel), but also developed a new component (operational services, e.g. rebalancing) which is a key differentiating characteristic and an 
emission driver of emerging modes such as shared micro-mobility services. Fig. 5 shows the emissions in g CO2 per passenger kilometre 
(pkm) for all modes relevant to this study. Appendix 2 further details the assumptions in terms of lifetime, mileage and occupancy 
levels. 

We integrate these findings on CO2 emissions with our findings on substitution patterns for shared and personal e-bikes and e- 
scooters to calculate their ‘net emissions’: 

net emissions (mode) = gross emissions (mode) −
∑

i
gross emissions (replaced modei) (8) 

Consider the following (hypothetical) example: a shared e-scooter (106 g CO2/pkm) replaces public transport12 (72 g CO2/pkm) 
and walking (0 g CO2 / pkm) in equal amounts (i.e., 50% and 50%). The ‘gross emissions’ of shared e-scooters are 106 g CO2 / pkm. The 
gross emissions of the replaced modes are 36 g CO2 / pkm (calculate: 50% * 72 g CO2 / pkm + 50% * 0 g CO2 / pkm). The resulting net 
emissions of shared e-scooters are thus 70 g CO2 / pkm. Positive net emissions can be interpreted as the additional emissions caused per 
pkm by the new mode. In turn, negative net emissions can be interpreted as the emissions saved per pkm by the new mode. 

Table 6 shows the resulting net emissions using the previously derived km-level substitution rates for all four micro-mobility 
modes. Note that only km-level substitution rates (i.e., not trip-level substitution rates) can be used for this type of analysis as trip- 
level substitution rates are biased towards short walk trips (see comparison in Table 5). We find that the CO2 emissions of personal 
e-bikes (34 g CO2/pkm) and personal e-scooters (42 g CO2/pkm) are lower than the average CO2 emissions of the modes they replace 
(88 g CO2 / pkm and 58 g CO2 / pkm, respectively). Shared e-bikes and shared e-scooters exhibit the opposite pattern: their CO2 
emissions are higher than the average CO2 emissions of the modes they replace. Hence, from a short-term mode choice perspective and 
under current conditions, only personal e-bikes and e-scooters contribute to making transport more sustainable, while shared e-bikes 
and e-scooters actually emit more CO2 than the transport modes they replace. All values can be regarded as lower limits as a certain 
share of trips can be assumed to be induced (i.e., not replacing previous trips), further adding to CO2 emissions. 

It is also very reasonable to assume that the public transport system runs “fixed”, regardless of who switches to/from public 
transport, and hence that 0 g CO2/pkm should be applied to trips with public transport. Following this logic, the net CO2 emissions of 
all micro-mobility modes increase to –33 g CO2/pkm for personal e-bikes, 56 g CO2/pkm for shared e-bikes, 3 g CO2/pkm for personal 
e-scooters and 79 g CO2/pkm for shared e-scooters. 

Finally, we know that substitution patterns vary with trip distance (cf. Fig. 4). Hence, net emissions will differ by distance bracket. 
Fig. 6 visualizes this relationship. We find that net emissions for personal e-bikes and e-scooters are positive for short distances as they 
predominantly replace walking for short trips. For longer distances, they replace cars and public transport substantially more often, 
resulting in overall negative net emissions. Net emissions of shared e-bikes and e-scooters are positive regardless of the distance 

Table 6 
Average micro-mobility net emissions after substitution effects.  

Substituted mode Gross emissions Substitution patterns (km-level) by micro-mobility mode  

[g CO2/pkm] E-Bike (personal) E-Bike (shared) E-Scooter (personal) E-Scooter (shared) 

Walk 0† 9% 9% 19% 25% 
PT (avg.) 72† 29% 43% 27% 38% 
Car (avg.) 135† 48% 15% 25% 15% 
Bike 17† 14% 29% 27% 13% 
E-Bike (personal) 34† 5% 1% 2% 
E-Bike (shared) 83† 0%  0% 5% 
E-Scooter (personal) 42† 0% 0%  0% 
E-Scooter (shared) 106† 0% 0% 0%  

Emissions of substituted modes 88 58 58 55 
Emissions of micro-mobility mode 34† 83† 42† 106†

Net emissions [g CO2/pkm] ¡54 25 ¡16 51 

† Emission calculations drawn from ITF (2020). 

12 It can also be argued that the public transport system is “fixed” regardless of who switches to/from public transport and hence 0 CO2 emissions 
should be applied. We show the differences between the two ways of treating CO2 emissions from public transport in our application further below. 
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bracket and highest for short distances. 

6. Contributions and conclusions 

This is the first study to collect revealed preference data for and to estimate a comprehensive mode choice model between several 
shared and personal micro-mobility modes (e-bikes, e-scooters) and more established transport modes (public transport, car, bike, 
walk). Our contributions to research, policy and practice are threefold. 

First, our results build the foundation to incorporate micro-mobility into transport network simulations to understand and to 
forecast their impact at system level and under varying policy scenarios. All else equal, the choice model reveals that trip distance, 
precipitation and access distance are fundamental to shared micro-mobility mode choice. Users are willing to walk between ~ 60 m 
and ~ 200 m to access shared e-scooters and shared e-bikes, respectively. Pre-booking functionality decreases the disutility of larger 
access distances. These results are not only useful to researchers and practitioners aiming to extend transport network simulations, but 
can also inform service provider’s decisions on how to optimize their vehicle repositioning schemes. 

Second, we demonstrate how choice models can be used to derive distance-based substitution patterns. Distance-based substitution 
patterns are more adequate for estimating environmental implications than common trip-based substitution patterns that are elicited 
through surveys for several reasons. First, it is substituted distance and not substituted trips that matters when calculating environ
mental implications. Second, substitution patterns derived from choice models are valid for all trips, not just the ones explicitly asked 
for, as they build on user preferences. Third, substitution patterns derived from choice models are more reliable than those derived 
from stated preference surveys, which are prone to biases such as the recall bias or the social desirability bias. This methodological 
contribution will gain in relevance as further new mobility services are introduced and their environmental implications will need to 
be assessed. 

Third, our results yield direct policy implications for cities aiming to reduce transport-related CO2 emissions. We show that per
sonal e-bikes and e-scooters emit less CO2 than the transport modes they replace, while shared e-bikes and e-scooters emit more CO2 
than the transport modes they replace. This finding challenges a common vision in transport that ‘sharing is caring’ for the envi
ronment. For micro-mobility, the relationship indeed appears to be reverse. On the one hand, city administrations can use these in
sights to justify public subsidies for personal e-bike/e-scooter sales and investments in bike lanes to increase their mode share further. 

Fig. 6. Replaced modes (stacked bars) and resulting per-kilometre net emissions (dots/line) for micro-mobility modes by distance.  
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On the other hand, our results suggest caution when admitting and licensing shared micro-mobility providers. City administrations can 
collaborate with and require providers to improve the two main sources of CO2 emissions of shared micro-mobility (operational 
services and vehicle manufacturing) while safeguarding their potential to improve transit catchment areas and to ease peak-time 
transit occupancy (e.g., Bieliński et al., 2021; de Bortoli and Christoforou, 2020; ITF, 2020). While shared e-bikes and e-scooters 
might increase CO2 emissions in the short-term, they could help spark sustainable mobility transitions in the long-term if usage leads to 
ownership. While first evidence from a trial with cargo cycles in Germany points in this direction (Narayanan et al., 2021), more 
longitudinal studies are clearly needed to establish this relationship. 

Finally, we acknowledge that this study has limitations. First, we used average values for life-cycle CO2 emissions from a study 
conducted by the International Transport Forum (2020). While this study is the most comprehensive one of this type known to the 
authors, it only produces average values. In reality, variability exists for different vehicle types and fleet configurations. Hence, our 
results can be regarded as an approximation only and future work could conduct a sensitivity analysis around average values and/or 
consider more specific values for local CO2 emissions. Second, despite all efforts in recruiting a truly random sample, the socio- 
demographics of our participants show some deviations from previous surveys which limit the representativeness of the survey and 
thus the results of this article. Third, although COVID-19 incidence rates were comparatively low in Switzerland during the time of 
study13, travel behaviour was still affected. Most of all, public transport usage remained lower than usual (Molloy et al., 2021). Our 
study thus potentially over-estimates public transport substitution by other modes. 
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Appendix A 

We specify the utility functions for the mixed logit model using the abbreviations as follows: 
Modes 
WA Walk 
PT Public transport 
CA Car 
BI Bike 
PEB Personal e-bike 
SEB Shared e-bike 
PES Personal e-scooter 
SES Shared e-scooter 
Attributes 
DI Trip distance 
AD Access distance 
TR Transfers 
EL Elevation 
MO Morning 
NI Night 
PR Precipitation 
WI Wind 
PTL PT season ticket (local) 
PTC PT season ticket (nation) 

13 The 7-day incidence rate per 100,000 inhabitants ranged between 1.4 on 1 June and 27.0 on 1 October. In comparison, the highest rate was 
reported on 11 November (666.3). 
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PTB PT season ticket (bundle) 
HHC Cars in household 
HHB Bikes in household 
HHE E-bikes in household 
HHS E-scooters in household 
UE University education 
FT Full-time employment 
AG Age 
FE Female 
Utility functions 

UWA = ASCWA + ε  

UPT = ASCPT + βPTDI
*DI + βPTDI2

*DI2 + βPTPRDI
*PR*DI + βPTAD

*AD+ βPTTR
*TR+ βPTPTB

*PTB+ βPTPTL
*PTL+ βPTPTC

*PTC + βPTMO
* 

MO+ βPTNI
*NI + βPTAG

*AG+ βPTFE
*FE+ βPTUE

*UE+ βPTFT
*FT + ε  

UCA = ASCCA + βCADI
*DI + βCADI2

*DI2 + βCAPRDI
*PR*DI + βCAHHC

*HHC+ βCAMO
* 

MO+ βCANI
*NI + βCAAG

*AG+ βCAFE
*FE+ βCAUE

*UE+ βCAFT
*FT + ε  

UBI = ASCBI + βBIDI
*DI + βBIDI2

*DI2 + βBIPRDI
*PR*DI + βBIHHB

*HHB+βBIWI
* 

WI*DI + βBIEL
*EL*DI + βBIMO

*MO+ βBINI
*NI + βBIAG

*AG+ βBIFE
* 

FE+ βBIUE
*UE+ βBIFT

*FT + ε  

UPEB = ASCPEB + βPEBDI
*DI + βPEBDI2

*DI2 + βPEBPRDI
*PR*DI + βPEBHHE

*HHE + βPEBMO
*MO+ βPEBNI

*NI + βPEBAG
*AG+ βPEBFE

*FE 
+ βPEBUE

*UE+ βPEBFT
*FT + ε  

USEB = ASCSEB + βSEBDI
*DI + βSEBDI2

*DI2 + βSEBPRDI
*PR*DI + βSEBPTB

*PTB+ βSEBAD
*AD+ βSEBMO

*MO+ βSEBNI
*NI + βSEBAG

*AG 
+ βSEBFE

*FE+ βSEBUE
*UE+ βSEBFT

*FT + ε  

UPES = ASCPES + βPESDI
*DI + βPESDI2

*DI2 + βPESPRDI
*PR*DI + βPESHHS

*HHS+ βPESMO
*MO+ βPESNI

*NI + βPESAG
*AG+ βPESFE

*FE 
+ βPESUE

*UE+ βPESFT
*FT + ε  

USES = ASCSES + βSESDI
*DI + βSESDI2

*DI2 + βSESPRDI
*PR*DI + βSESPTB

*PTB+ βSESAD
*AD+ βSESMO

*MO+ βSESNI
*NI + βSESAG

*AG 
+ βSESFE

*FE + βSESUE
*UE+ βSESFT

*FT + ε 

Note that all alternative specific constants are random to account for taste heterogeneity in mode choice between individuals. 

Appendix B 

In this study, we use CO2 emissions calculated by the International Transport Forum (ITF, 2020). The report and a detailed excel file 
with all calculations are available online (accessed 1 October 2021):  

- Report: https://www.itf-oecd.org/sites/default/files/docs/environmental-performance-new-mobility.pdf  
- Excel: https://www.itf-oecd.org/sites/default/files/life-cycle-assessment-calculations-2020.xlsx 

From the Excel file, we extract the following details on each transport modes’ characteristics (Table 7): 

Table 7 
Transport mode characteristics (extracted from ITF, 2020).    

Bike 
(personal) 

E-Bike 
(personal) 

E-Scooter 
(personal) 

PT (avg.) E-Bike 
(shared) 

E-Scooter 
(shared) 

Car (avg.) 
(personal) 

Lifetime year 5.6 5.6 3.0 25.0 1.9 1.9 15.0 
Annual mileage km 2400 2400 2200 55,000 2900 2900 12,100 
Average occupancy person 1.0 1.0 1.0 103.5 1.0 1.0 1.5 
Life-cycle mileage pkm 13,440 13,440 6600 142,312,500 5510 5510 272,250 

Life-cycle CO2 

emissions 
kg 228 455 276 10,225,710 458 587 36,850 

CO2 emissions g/ 
pkm 

17 34 42 72 83 107 135  
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