

THE WRI CENTER FOR TRANSPORT AND THE ENVIRONMENT

The Role of Market-based Instruments -Road Pricing, Parking Fees and Congestion Pricing

Lee Schipper Wei-Shiuen Ng

Dec. 12, 2006 Jogjakarta, Indonesia

WORLD RESOURCES INSTITUTE

EMBARQ

- A catalyst for socially, financially, and environmentally sound solutions to the problems of urban mobility
- Work with politically and financially empowered authorities, forming public private partnership and direct engagement with cities
- Founded in May 2002 by WRI and the Shell Foundation with a 5 yr, US\$7.5 M grant by the SF
- Additional EMBARQ sponsors include
 - Hewlett Foundation
 - Energy Foundation
 - Blue Moon Foundation
 - Asian Development Bank
 - Netherlands Ministry of Foreign Affairs
 - US Environmental Protection Agency

Sustainable Transport - Leaves no Burdens

- Economic Sustainability
 - Each mode bears full social costs
 - Affordable to users and authorities
 - Attractive as public or private business
- Social Sustainability
 - Promotes access for all, not just a few
- Environmental Sustainability
 - Minimizes accidents and damage to human health
 - Reduces greenhouse gas emissions

In this framework, full cost accounting is essential.

Costs of Urban Transport

- Resource Costs and Charges
 - Vehicles and their operation (including licenses, taxes)
 - User charges (tolls, parking, fares, etc)
- Provider Costs Paid by Local and National Authorities
 - Road construction and maintenance
 - Other fixed infrastructure (including airports, terminals etc)
 - Rolling stock, buses, etc.
- External costs imposed on the society
 - Environmental impacts air pollution, water pollution and noise
 - 2. Road traffic congestion a symptom of excessive demand for road capacity
 - 3. Accidents, injury, and death, particularly what is imposed on non-motorized persons

Total Costs = Resource Costs + Charges Paid + Provider Costs + External Costs

5

The Unpaid Costs of Urban Transport

- Do road users pay full direct costs?
 - User fees, taxes, etc
- Do users pay full social costs?
 - Air, water, noise pollution, congestion
- Fairness of the road charging system
 - On whom do unpaid costs fall upon?
 - Users of different transport mode
 - Vulnerable social groups
- Market instruments can internalize such
 transport costs

Cost of Traffic Congestion

- In Developed countries
 - Nearly 3% of GDP (US\$810 billion) in OECD countries
 - US\$68 billion in 2002 in 75 US urban areas
 - In Western Europe, gridlock will increase by 188% on urban roads by 2010
- Situation worse in Asia
 - Cost of congestion in Korea is 4.4% of its GDF
 - In Bangkok, cost of congestion can be as high as 6% of its GDP
- Building more roads does not solve the problem

Applying market-based instruments to better match the increasing demand for road use to the finite supply of roads.

7

Market-based Instruments - Backbone of the Solution

- Economic incentives are used to pursue a policy goal
 - Internalization of costs, reducing externalities
 - Price mechanism is a tool for policy enforcement
 - Price instruments have immediate influence on the cost of driving
- The higher the cost, the less car use, less energy consumption and emissions
 - Success means regulation of car use
 - Large improvements seen with small drops in traffic
- Political acceptance requires other actions
 - Sincere and measurable improvements in alternatives
 - Consideration of compensation to some
 - Careful consideration of exemptions

WHAT, WHY, HOW OF CONGESTION PRICING?

Part of Sustainable City Tool Box

- Allocates scarce space to improve access
- Confronts road users with s.r. marginal costs
- Demonstrated to reduce car traffic where applied

Part of a Comprehensive Package

- Need clear plans on transit, parking vehicle taxes
- Sensitive outreach very important
- Monitoring to show results key

Many Technological Options - that's not an issue

- Reduce system and collection costs
- Increase convenience, lower "false positives"
- Increase payment options, etc.

The Uncollected Bill for Urban Transport –

Roads and Road Space

- Marginal cost of peak capacity high
- Alternative uses of space NMT, BRT, etc.
- Space for buildings, parks, etc.

Metros, other Capital Intensive Systems

- High tracked systems u p to \$1000/cm
- High cost of peak, poor utilization

Long-Run Bill for Expansive Land Use

- Signals to developers where to build
- Signals to job creation where to locate
- Signals to commuters where to live?

11

The Uncollected Bill for Urban Transport – Key Issues

Efficacy

- Traffic reduction/time saving: when, where?
- Revenues compared with collection costs
- Hassles how easy or hard

Economic Efficiency

- Direct impact cost of a reduced trip, elasticity
- Social cost-benefit (not so simple)
- Future costs avoided

Equity

- Who is "forced off" the road?
- What alternatives are provided
- What indirect effects (shopping, access effects)

UNSETTLING ISSUES FROM CONGESTION PRICING

Long Run vs Short Run Impacts

- How much less traffic than otherwise?
- What are affects 5-10 years later?
- How did evolution of city change?

Technical Issues for Planning

- Elasticities of usage
- Value of time
- Costs/value of alternative transit

Technical and Social Challenges

- What are best enforcement options?
- Is privacy an issue?
- Is equity an issue

13

Impacts on Various Groups Consider Three Kinds of Travelers

- **Surface Collective Transport (bus, taxi)**
 - Great time loss and unreliable travel times
 - Significantly lower revenue/vehicle/year
 - Greater exposure to pollution
- Walker/Cycler
 - Losing space and security to cars, two wheelers
 - Exposure to pollution
 - Push people to cars
- Individual vehicle users (car, two-wheeler)
 - Very rich ignore others must value their time
 - Those who pay better off travel times lower
 - Those who leave cars home also better off

Impacts on Various Groups Consider Three Kinds of Countries

- Industrialized
 - Mainly adjustment costs for car users
 - Collective transport, NMT response important
 - Complains mainly from middle class with cars
- Middle Singapore, Mexico, etc
 - Singapore started early and learned
 - Mex, Bra, Chile, Kor., Tai Car owners powerful
 - Urban middle class, poor lose time
- Low Income
 - Minority (<10%) clog up streets for majority
 - Majority are walkers, NMT face worst pollution

15

Types of Road Pricing

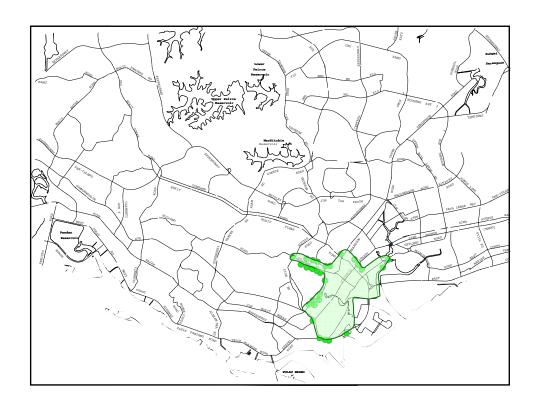
- Road tolls
- Congestion pricing
- Cordon fees
- HOT lanes
- Vehicle use fees
- Road-space rationing

The Singapore Experience

- Manual road pricing (ALS) introduced in the Central Business District (CBD) since 1975
- High manpower needs, inconvenient, limited in varying road pricing charges
- Automated with the Electronic Road Pricing (ERP) system replaced the manual scheme in 1998
- 45 ERP gantries currently in operation

Congestion Pricing

Definition


 A type of road pricing intended to reduce traffic congestion by encouraging travelers to shift to other times, routes and modes

Difference in prices

- Tolls are significantly higher during congested periods and lower or non-existent during uncongested periods
- Toll rates can be based on a fixed schedule, or be dynamic

Benefits

- The only proven mechanism to achieve large short-term modal shifts away from private transport to public transport
- More effective in regulating car use than increases in fuel taxes

Congestion Pricing in Singapore

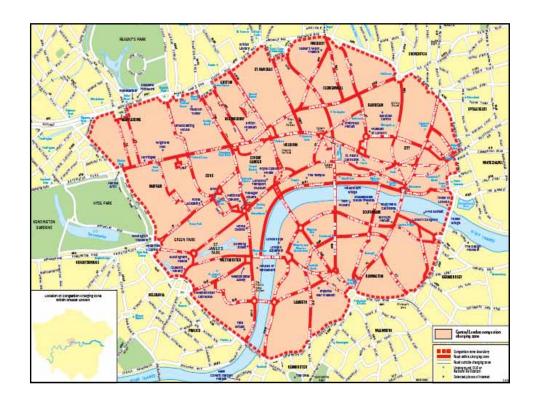
Area Licensing Scheme (ALS)

- Traffic volume decreased by more than 50% when pricing was introduced in 1998
- Average speed in the CBD doubled to 36km per hour

Electronic Road Pricing (ERP)

- Traffic volume in the CBD decreased by 7-8% during morning peak and off-peak hours
- 28% increase in traffic volume during evening peak hours
- In 2004, an average of 260,000 ERP transactions were generated daily
- ERP generates a revenue of \$55 million per year

In-vehicle Unit (IU) and the CashCard


London Congestion Charging

The London Scheme

- Cordon pricing
- Flat fee of £5 per day between 0700 and 1830 hrs, Mon Fri
- Charging area of 21km² involves monitoring and charging 2000,000 vehicles per day
- Before pricing scheme average traffic speeds 15km/hr
- Revenue retained locally to fund improvements in local transport

Effects of Congestion Charging

- Traffic entering the zone has decreased by 18%, and by 15% within the zone
- Congestion reduction of 30% inside charging zone
- Traffic speed has increased by 37%
- 65,000 to 70,000 fewer car trips entering the zone
- Direct effect on business activity was small
- Public transport catered for people switching transport mode

Stockholm

A newly proposed system

- Started in January 2006
- Vehicles entering the inner city area are charged US\$1.27 – US\$2.54 per trip

Impact

- Traffic volume decreased by 25%, removing 1000,000 vehicles during peak hours
- Increasing daily public transit rider-ship by 40,000
- Daily revenue of US\$500,000 to \$2.7 million

Public acceptance

 Vote in Sept 06 narrowly favored continuation of the system

23

Other Successful Cities

Norway

- Cordon charges have been used in Norway to manage traffic entering three major cities: Bergen, Oslo, and Trondheim
- In 1991, Trondheim established a toll ring around its downtown area
- Electronic tolling systems are used to collect the fees, which vary by the time of day

France

- Since 1992, variable tolls have been used in France to spread peak-period traffic on congested portions of major intercity tollways
- Succeeded in reducing congestion by shifting traffic from the peak period 24

Other Successful Cities

Canada

- In 1997, variable pricing was implemented on a toll road (Highway 407) in Toronto, Ontario.
- Fees are based on the time of day, vehicle class, and distance traveled.
- Pricing program expected to reduce congestion on Highway 407 and generated approximately \$70 million in the first year of operation.

25

Parking Fees

The High Cost of Free Parking

- Average car is parked 95% of the time
- Average parking space costs more than average car
- With free parking, streets cluttered (e.g. Hanoi)
- "Tragedy of the commons"

Hidden Aspects

- Most common fringe benefit offered to workers in the U.S.
- Cost of parking subsidy is about 1% of the GNP and 4 times the amount of funding for public transit
- Free parking spaces have other values


Reducing the Price of Parking

- Charge performance-based prices for curb parking
- Return revenue to the metered districts to pay for added public services

Changing Curb Parking Policy

Searching for curb parking

- 8%-74% of cars in congested traffic
- Average time between 3 and 14 min Market-priced curb parking
- Eliminates economic incentive to cruise
- Yield 5%-8% of the total land rent in a city, sometimes more revenue than the property tax
- Charging the right price balance the demand
 Goal of right pricing Variable-pricing policy
- Achieve a curb-space vacancy rate that reduces cruising
- 15% of curb spaces should remain vacant
- · Right price will vary to ensure this rate
- Right price emerges from the right occupancy rate

Pasadena – A model city

- Pasadena, California a model for good parking policy, (Shoup, 2004)
- No parking meters until 1993- all curb parking was free
- Each parking meter in Old Pasadena generates \$1,800 per year, yielding a total of \$1.3 million in 2001
- All meter revenue is used for public investments and neighborhood improvement
- Drivers finance all the improved public services, at no cost to the businesses, property owners, and taxpayers

"You Meter Money Will Make the Difference in Old Pasadena"

29

Applications and Challenges

Implementation

- Not just another tax charge
- Where will the revenue go?

Public Acceptance

- An effective pricing scheme
- Gaining support from the public and stakeholders


Integration of Instruments

- Has to be part of an integrated strategy
- Alternatives must be provided
- Integrate proven technologies

Future Trends

Developing schemes that will be more easily and effectively installed

- Technologies on a smaller scale, e.g. cell phones
- Lower cost of implementation
- Improved forecasting, e.g. demand and trip origins
- Better traveler information

THE WRI CENTER FOR TRANSPORT AND THE ENVIRONMENT

The Role of Market-based Instruments -Road Pricing, Parking Fees and Congestion Pricing

Lee Schipper Wei-Shiuen Ng

Dec. 15, 2006 Jogjakarta, Indonesia WORLD RESOURCES INSTITUTE

EMBARQ

- A catalyst for socially, financially, and environmentally sound solutions to the problems of urban mobility
- Work with politically and financially empowered authorities, forming public private partnership and direct engagement with cities
- Founded in May 2002 by WRI and the Shell Foundation with a 5 yr, US\$7.5 M grant by the SF
- Additional **EMBARQ** sponsors include
 - Hewlett Foundation
 - Energy Foundation
 - Blue Moon Foundation
 - Asian Development Bank
 - Netherlands Ministry of Foreign Affairs
 - US Environmental Protection Agency

Sustainable Transport - Leaves no Burdens

- Economic Sustainability
 - Each mode bears full social costs
 - Affordable to users and authorities
 - Attractive as public or private business
- Social Sustainability
 - Promotes access for all, not just a few
- Environmental Sustainability
 - Minimizes accidents and damage to human health
 - Reduces greenhouse gas emissions

In this framework, full cost accounting is essential.

Costs of Urban Transport

- Resource Costs and Charges
 - Vehicles and their operation (including licenses, taxes)
 - User charges (tolls, parking, fares, etc)
- Provider Costs Paid by Local and National Authorities
 - Road construction and maintenance
 - Other fixed infrastructure (including airports, terminals etc)
 - Rolling stock, buses, etc.
- External costs imposed on the society
 - Environmental impacts air pollution, water pollution and noise
 - 2. Road traffic congestion a symptom of excessive demand for road capacity
 - 3. Accidents, injury, and death, particularly what is imposed on non-motorized persons

otal Costs

Resource Costs + Charges + Provider Costs +External Costs

The Unpaid Costs of Urban Transport

- Do road users pay full direct costs?
 - User fees, taxes, etc
- Do users pay full social costs?
 - Air, water, noise pollution, congestion
- Fairness of the road charging system
 - On whom do unpaid costs fall upon?
 - Users of different transport mode
 - Vulnerable social groups
- Market instruments can internalize such
 transport costs

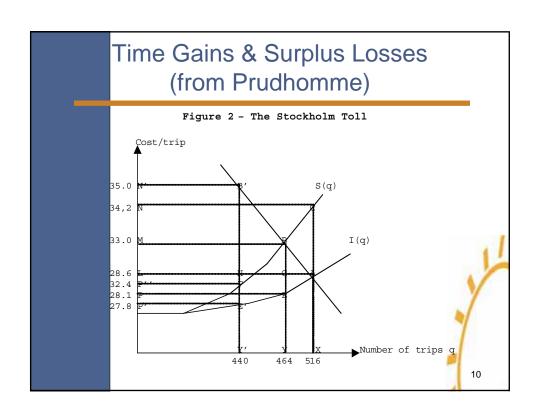
Cost of Traffic Congestion

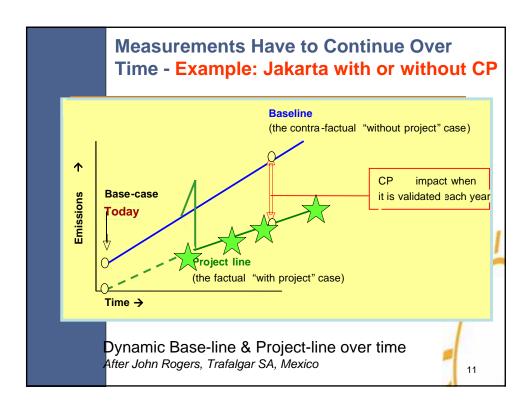
- In Developed countries
 - Nearly 3% of GDP (US\$810 billion) in OECD countries
 - US\$68 billion in 2002 in 75 US urban areas
 - In Western Europe, gridlock will increase by 188% on urban roads by 2010
- Situation worse in Asia
 - Cost of congestion in Korea is 4.4% of its GDF
 - In Bangkok, cost of congestion can be as high as 6% of its GDP
- Building more roads does not solve the problem

Applying market-based instruments to better match the increasing demand for road use to the finite supply of roads.

7

What, Why, How of Congestion Pricing?


- Part of Sustainable City Tool Box
 - Allocates scarce space to improve access
 - Confronts road users with short term marginal costs
 - Demonstrated to reduce car traffic where applied
- Part of a Comprehensive Package
 - Need clear plans on transit, parking vehicle taxes
 - Sensitive outreach very important
 - Monitoring to show results key
- Many Technological Options that's not an issue
 - Reduce system and collection costs
 - Increase convenience, lower technical errors
 - Increase payment options, etc.


)

Market-based Instruments

- Backbone of the Solution

- Economic incentives are used to pursue a policy goal
 - Internalization of costs, reducing externalities
 - Price mechanism is a tool for policy enforcement
 - Price instruments have immediate influence on the cost of driving
- The higher the cost, the less car use, less energy consumption and emissions
 - Success means regulation of car use
 - Large improvements seen with small drops in traffic
- Political acceptance requires other actions
 - Sincere and measurable improvements in alternatives
 - Consideration of compensation to some
 - Careful consideration of exemptions

The Uncollected Bill for Urban Transport Roads and Road Space - Marginal cost of peak capacity high - Alternative uses of space – NMT, BRT, etc - Space for buildings, parks, etc. Metros, other Capital Intensive Systems - High tracked systems – up to US\$1000/cm - High cost of peak, poor utilization Long-Run Bill for Expansive Land Use - Signals to developers – where to build? - Signals to job creation – where to locate? - Signals to commuters – where to live?

The Uncollected Bill for Urban Transport – Key Issues

- Efficacy
 - Traffic reduction/time saving: when, where?
 - Revenues compared with collection costs
 - Hassles how easy or hard
- Economic Efficiency
 - Direct impact cost of a reduced trip, elasticity
 - Social cost-benefit (not so simple)
 - Future costs avoided
- Equity
 - Who is "forced off" the road?
 - What alternatives are provided
 - What indirect effects (shopping, access effects)

13

Unsettling Issues From Congestion Pricing

Long Run vs. Short Run Impacts

- How much less traffic than otherwise?
- What are affects 5-10 years later?
- How did evolution of city change?

Technical Issues for Planning

- Elasticities of usage
- Value of time
- Costs/value of alternative transit

Technical and Social Challenges

- What are best enforcement options?
- Is privacy an issue?
- Is equity an issue?

Impacts on Various Groups Consider Three Kinds of Travelers

- Surface Collective Transport (bus, taxi)
 - Great time loss and unreliable travel times
 - Significantly lower revenue/vehicle/year
 - Greater exposure to pollution
- Walker/Cyclist
 - Losing space and security to cars, two wheelers
 - Exposure to pollution
 - Push people to cars
- Individual vehicle users (car, two-wheeler)
 - Very rich ignore others must value their time
 - Those who pay better off travel times lower
 - Those who leave cars home also better off

Impacts on Various Groups Consider Three Kinds of Countries

- Industrialized
 - Mainly adjustment costs for car users
 - Collective transport, NMT response important
 - Complains mainly from middle class with cars
- Middle Singapore, Mexico, etc
 - Singapore started early and learned
 - Mex, Brazil, Chile, Kor., Tai Car owners powerful
 - Urban middle class, poor lose time
- Low Income
 - Minority (<10%) clog up streets for majority
 - Majority are walkers, NMT face worst pollution

Applications and Challenges

Implementation

- Not just another tax charge
- Where will the revenue go?

Public Acceptance

- An effective pricing scheme
- Gaining support from the public and stakeholders

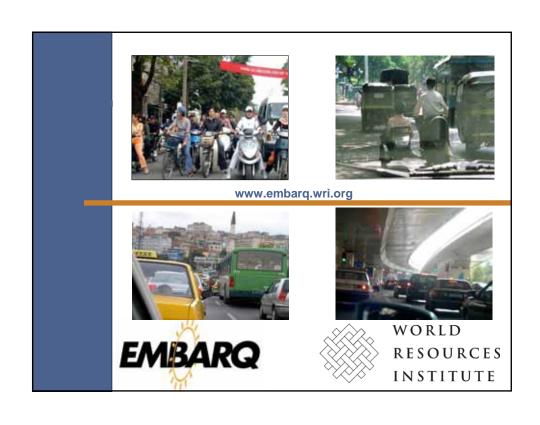
Integration of Instruments

- · Has to be part of an integrated strategy
- · Alternatives must be provided
- Integrate proven technologies

17

Future Trends and Needs

Not Just for Rich Guys


- Put in place early on (Singapore) and avoid car dependence
- Lower cost of implementation
- Need better detection for two-wheelers

Use to Shape City Growth

- Singapore succeeded
- · Better to avoid than to rebuild

Developing schemes that will be more easily and effectively installed

- Technologies on a smaller scale, e.g. cell phones
- Lower cost of implementation
- Better traveler information through ITS

