Automatic bike count a year round – challenges and development needs

Kiiskilä Kati, SITO Ltd Kimmo Karoluoto, SITO Ltd Kimmo Saastamoinen, Riksroad Ltd

Winter Cycling Congress, iBikeOulu, 2013 Oulu, February 13–14

WHEN INFRASTRUCTURE COUNTS

2 | CONTENTS

Contents

- 1. Introduction
 - Winter cycling in Oulu
 - Seasonal variation of cycling
 - Why do we need to count the amount of cyclists?
- 2. How different counting devices work in winter conditions?
- 3. Example how the data can be used
 - Seasonal and weather variation of cycling statistical model
- 4. Summary and conclusions

3 | 1. INTRODUCTION

Cycling segments in City of Oulu (2009)

. . .

When infrastructure counts

4 | 1. INTRODUCTION

SITO

Seasonal variation of cycling

6 | 1. INTRODUCTION

Why do we need to count the amount of cyclists?

- There are both national and local targets for the increasing amount and/or share of walking and cycling.
- Also in Oulu a vision is to increase the amount of bicycling.
- There is also a vision to make/keep Oulu the best winter cycling city in the world.

-We need better measures and methods for evaluating pedestrian and bicycle traffic all year round to follow up these targets.

-This information also serves traffic planning.

Problems in measures and methods for evaluating pedestrian and bicycle traffic

- Travel surveys are done quite infrequently, because they are expensive (every 5-10-20 years).
- Cycle and pedestrian counts are made with multiple ways in different cities and often not too systematic manner.
 - Often there is some fixed measurement points at a few places, but there is not a clear understanding what those represent.
 - Manual short counts are made at a relatively large number of places and the counts are scaled up to daily or annual values. Often some general national coefficients are used.
 - Weather data is sometimes collected, but the result are not corrected according to that.
 - Data is not collected in one database and corrected \rightarrow it is not used.

•••

• The vision in Oulu is to create a systematic system for pedestrian and cycling counting and follow-up. In the future, the information could be provided also in internet.

When infrastructure counts

8 | 2. HOW DIFFERENT COUNTING DEVICES WORK IN WINTER CONDITIONS?

Thesis 'Equipments and Methods of Light Traffic Counting'

- Author Kimmo Karoluoto (Sito)
- http://urn.fi/URN:NBN:fi:amk-201104204598 (in Finnish)
- Financed by City of Oulu and ELY Centre of North Ostrobothnia (regional road authority)
- The main target of this thesis were:
 - to test different traffic counting devices for pedestrians and cyclists trying to find out accuracies and features of the devices.
 - to find out how different counting devices work in winter conditions.
- Testing was performed in January 2011.
- There are huge amount of techniques and equipments for traffic counting, only few were tested.

9 | 2. HOW DIFFERENT COUNTING DEVICES WORK IN WINTER CONDITIONS?

Five counting devices were tested

- Eco-combo with infrared sensors and inductive loops
- SDR traffic classifier
- Viacount II traffic counter
- Finnish Otos camera device
- Inductive loops of traffic lights.

10 2. HOW DIFFERENT COUNTING DEVICES WORK IN WINTER CONDITIONS?

Counter	Flexibility	Accuracy	Winter aspect	
ECO combo (loops and infrared)	Permanent location	 Accurate cyclist counter. Pedestrian counting is more sensitive for errors. The speed of the traffic do not effect the results. 	Snow block easily the infrared censor → needs constant winter maintenance	
SDR (radar)	Easy to install and move	 Accurate cyclist and pedestrian counter. Very slow cyclist and fast pedestrians, and groups of pedestrians cause accuracy problems. 	 Heavy rain causes inaccuracy. Snow slows traffic down, which causes inaccuracy. 	
Viacount II (radar)	Easy to install and move	 Accurate cyclist counter. Very slow cyclist cause accuracy problems. 	 Heavy rain causes inaccuracy. Snow slows traffic down, which causes inaccuracy. 	
Otos (camera)	Quite easy to move, but needs constant 240 V energy source	 Counts only total amount of pedestrian and cyclist, no classification (yet). Good accuracy and suitable also for difficult places. 	Seems to deal quite well with winter conditions.	
Inductive loops (traffic lights)	Permanent location	 Counts only cyclists. Accuracy is not good. However, seasonal variation can be measured correctly. 	No special needs for winter maintenance.	

S SITO

11 2. HOW DIFFERENT COUNTING DEVICES WORK IN WINTER CONDITIONS?

Challenges of traffic counting in winter time

SNOW AND ICE...

SNOW AND ICE....

• Winter conditions are challenging.

🗲 SITO

• Design and details are seldom planned for winter conditions.

12 2. HOW DIFFERENT COUNTING DEVICES WORK IN WINTER CONDITIONS?

Solutions

- Design
- Winter maintenance
- Only cyclist counting in winter time

Seasonal and weather variation of cycling – statistical model

- The daily amount of cyclist in four eco-counter points in Oulu
- One year data (year 2011)
- Weather information
 - Actual measured data from weather stations
 - Forecasted data from daily TV news (a day before) -

When the decision is made?

When infrastructure counts

counting points

14 3. AN EXAMPLE HOW THE DATA CAN BE USED

Amount of cyclist in different temperatures

Daily average temperature (Celsius degrees)

🖻 SITO

Variables used in statistical model

Group of variables	Variable	Description		
Weather (measured or	Measured temperature	Continuous variable (Celsius degrees)		
forecasted)	Forecasted temperature	Continuous variable: average of forecasted temperature for the morning and for the afternoon		
	Measured wind	Continuous variable (meters/second)		
	Forecasted rain	Dummy variable. If either a morning or an afternoon was forecasted to be rainy, a day was classified as a rainy day.		
Season/ day	Weekdays	Dummy variable		
	Season	Dummy variables: spring, summer, winter, autumn		
	School holidays (summer, winter, autumn, etc.)	Dummy variable		

When infrastructure counts

16 3. AN EXAMPLE HOW THE DATA CAN BE USED

Some findings

- There were not a big difference between the explanation power of forecasted and measured temperature.
- Weekday as a variable has a very good explanation power.
- Already weekday and temperature together explain quite well the variation (R²= 0,73).
- Quite simple model that included variables 'forecasted rainy day', 'measured temperature' and 'weekday dummy' had good explanation power (R²= 0,78)
- Variable 'School holidays' has the best explanation power of all variables that explained season. It worked better than for example 'summer'.

Statistical model to explain daily amount of cyclist

 Model Summary

 Model
 Adjusted R
 Std. Error of the Estimate

 1
 .922³
 .850
 .847
 945,81921

Multiple regression was used, so called "stepwise" method

a. Predictors: (Constant), Ennuste_koko (sade1), Iomakausi, arki, W, C, kesä

Coefficients^a

Model	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
1 (Constant)	3630,383	149,512		24,282	,000
Weekday	2518,329	114,477	,471	21,999	,000
Summer	725,805	175,712	,142	4,131	,000
School holiday	-1337,633	134,438	-,248	-9,950	,000
Temperature	169,622	7,473	,759	22,697	,000
Wind	-299,823	43,512	-,160	-6,891	,000
Forecasted rainy day	-732,943	73,503	-,221	-9,972	,000

a. Dependent Variable: Kaikki_PP

When infrastructure counts

4. SUMMARY AND CONCLUSIONS

Summary and Conclusions

- We need better measures and methods for evaluating pedestrian and bicycle traffic, and those methods have to work also in winter conditions.
- Winter time is challenging, but mostly counting devices seems to work quite well.
- With some details of design and with good winter maintenance, problems can be solved.
- We also need shared "databank" for counting results.

Thank You for you attencion!

Leading Consultant Kati Kiiskilä Tel. +358 20 7476696 Email. kati.kiiskila<at>sito.fi

